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Understanding and 
Controlling Results

To create accurate linearized models, it is important to be able to interpret the results and to 
understand the linearization algorithms. One method of interpreting the results is by simulating the 
linearized model and comparing the output with the original model. The linearization algorithms can 
be adjusted in various ways to control these results, as outlined in this chapter.

Comparing the Linearized and 
Original Models (p. 1-2)

Methods for simulating the linearized model and 
comparing the results to the original model.

Linearization Algorithms (p. 1-9) Brief introduction to the two main linearization methods 
with advantages and disadvantages of each.

Block-by-Block Analytic Linearization 
(p. 1-11)

Description of the default linearization method with 
suggestions for controlling the results.

Numerical-Perturbation Linearization 
(p. 1-16)

Description of an alternative linearization method with 
suggestions for controlling the results.
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Comparing the Linearized and Original Models
Comparing simulations of the original model with simulations of the linearized 
model helps to determine if the linearized system behaves in a similar way to 
the original model. When comparing models, remember that the states, inputs, 
and outputs of the linearized model are defined about an operating point of the 
original model, using the following variables:

This means that when the original model is at the operating point x(t)=x0, 
u(t)=u0, y(t)=y0, the linearized model will be at the operating point δx(t)=0, 
δu(t)=0, δy(t)=0. To compare the models accurately, subtract u0 from input 
values and x0 from the initial state values in the linearized model, then add y0 
to the output signal.

When you linearize only a portion of the original model, you should simulate 
the linearized model by substituting it back into the model in place of the 
original portion. This ensures that the operating point and inputs to the 
linearized portion are correct. To do this, export the linearized model to the 
workspace, delete the original portion from the model, and replace it with an 
LTI System block based on the linearized model.

Example
This example compares the magball model with the linearized model computed 
in “Linearizing the Model” on page 3-29:

1 If you have not done so already, linearize the magball model at the targeted 
operating point computed in “Computing Operating Points from 
Specifications” on page 3-21.

2 To create a new model containing the linearized plant system, first export 
the linearized model and operating point from the Control and Estimation 
Tools Manager to the MATLAB® workspace. To do this, right click the 
linearized model name in the project tree of the Control and Estimation 

x t( )δ x t( ) x0
u t( )δ

–
u t( ) u0

y t( )δ
–

y t( ) y0–

=
=
=



Comparing the Linearized and Original Models
Tools Manager. Select Export from the menu. Accept the default name for 
the model, Model_sys, and for the operating point, Model_op.

Then, create a new Simulink® model, magball_lin, which is a copy of the 
original model, magball. Replace the Magnetic Ball Plant subsystem in 
magball_lin with an LTI System block (located in the Control System 
Toolbox category of the Simulink Library Browser). Import the linearized 
model into this block by entering Model_sys in the LTI system variable 
field in the Block Parameters window.

3 Set the operating points of the models by specifying the initial values of the 
states in the models:

a To set the initial values for magball, first enter the following at the 
command line

[x,u]=getxu(Model_op) 

This returns vectors of state values and input values from the object 
Model_op.

x =
0.0500
0
-0.0000
7.0036
0

u =
[]

The ordering of states in these vectors is the same as that used in the 
Simulink model. To use the values in the state vector, x, as initial values 
for the model, select Simulation -> Configuration Parameters in the 
magball model window, then select the Data Import/Export panel. 
Select the check box next to Initial State and enter x on the right. Click 
OK.

b In magball_lin, the operating point values for the linearized system will 
all be zero since this subsystem was linearized about the operating point 
values. The operating point values in the Controller will be the same as 
in the original model since the Controller was not linearized. To create a 
1-3
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vector of initial state values with the correct state ordering, first create a 
new operating point object for the system by typing

op=operpoint('magball_lin') 

Change the operating point for the Controller in op to be the same as 
those in Model_op. 

op.States(1).x=Model_op.States(1).x

This returns the following operating point.

Operating Point for the Model magball_lin.
(Time-Varying Components Evaluated at time t=0)

States: 
----------
(1.) magball_lin/Controller/Controller

x: 0            
x: -2.56e-006 

(2.) magball_lin/LTI System/Internal
x: 0            
x: 0            
x: 0            

Inputs: None 

Keep the operating point for the LTI system as zero. Extract vectors of 
states and inputs from this edited operating point.

[x1,u1]=getxu(op)

which returns

x1 =
  1.0e-005 *
         0
         0
         0
         0
   -0.2556

u1 =
     []

c To use the values in the state vector, x1, as initial values for 
magball_lin, select Simulation -> Configuration Parameters in the 



Comparing the Linearized and Original Models
magball_lin model window, then select the Data I/O panel. Select the 
check box next to Initial State and enter x1 on the right. Click OK

4 The output of magball_lin will be zero at the operating point. To create an 
output signal that is comparable with that in magball, add a Constant block, 
with a value of 0.05 to the output of magball_lin. Similarly, the input to 
magball_lin should be zero at the operating point. This is achieved by 
subtracting a value of 14 from the input signal of the linearized system. The 
operating point values, 0.05 and 14, were found using a Scope block to 
measure steady-state signal levels in the original model.

5 To observe the response of the models to a perturbation, add a Step block 
with the following parameter values to the input to the plant in both models. 

Figure 1-1:  Parameter Values for Step Block

The model diagrams should now look like those in the following figures.
1-5
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Figure 1-2:  Magball Model with a Step Block Added to the Input



Comparing the Linearized and Original Models
Figure 1-3:  Magball Model with Linearized Magnetic Ball Plant

6 Run simulations in both models. The output signals, in the Scope blocks, are 
shown in the following figure.
1-7
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Figure 1-4:  Scope Blocks from Original (left) and Linearized (right) Models

As shown in the figure, both the original and linearized models react to the step 
input in a similar way.



Linearization Algorithms
Linearization Algorithms
Simulink Control Design can use two different linearization methods. The 
default method, which is used unless an option is selected, is called 
block-by-block analytic linearization. To use the alternative method, 
numerical-perturbation linearization, you must select an option in the 
Linearization Options dialog box of the GUI, or if using functions, with the 
linoptions function. The remainder of this chapter describes the two 
linearization methods in more detail and provides suggestions for controlling 
the results to create more accurate linearized models. 

The default linearization method, block-by-block analytic linearization, 
linearizes the blocks individually and then combines the results to produce the 
linearization of the whole system. This method has several advantages:

• It divides the linearization problem into several smaller, easier problems.

• It defines the system being linearized by input and output markers on the 
signal lines rather than root-level inport and outport blocks.

• It supports open loop analysis.

• You can control the linearization of each block by using an analytic 
linearization that is programmed into the block or by selecting a 
perturbation level for the block.

The main disadvantage of this method is that for large or complicated systems 
it might be slower than numerical-perturbation linearization.

Alternatively, numerical-perturbation linearization linearizes the whole 
system by numerically perturbing the system’s inputs and states about the 
operating point. This method has the advantage that it is quick and simple, 
especially for large or complicated systems. However, there are also several 
disadvantages with this method:

• It relies on root-level inport and outport blocks to define the system being 
linearized.

• There is no support for open loop analysis.

• You have limited control over the perturbation levels for each block.

• It does not use any of the analytic, pre-programmed block linearizations.

• It is sensitive to scaling issues (models with large and small signal values).
1-9



1 Understanding and Controlling Results

1-1
“Block-by-Block Analytic Linearization” on page 1-11 and 
“Numerical-Perturbation Linearization” on page 1-16 discuss these methods 
further.
0



Block-by-Block Analytic Linearization
Block-by-Block Analytic Linearization
Block-by-block analytic linearization is the default linearization method in 
Simulink Control Design. In this method, each of the blocks within the 
linearization path is first linearized individually. The linearization of the 
whole system is then computed by combining these results using the algorithm 
discussed in “Numerical-Perturbation Linearization” on page 1-16. This 
approach breaks the problem into several smaller problems. The following 
section gives details of the methods used to linearize each block, with 
suggestions for controlling the linearizations to create more accurate linearized 
models.

Individual Block Linearization Methods
There are two methods that Simulink Control Design uses to linearize the 
individual blocks in a model. Each method has options that you can control to 
create accurate linearized models. 

Analytic Linearization
Several nonlinear Simulink blocks contain analytic linearized models. When 
linearizing a system using block-by-block analytic linearization, you can use 
these analytic linearizations instead of numerically perturbing the block. This 
is especially useful for blocks that contain discontinuities and do not give good 
results using numerical perturbation.

The following blocks contain analytic linearizations. For more information see 
the reference page for each block.

• Abs

• Dead Zone

• Gain

• Memory

• Quantizer

• Rate limiter

• Saturation

• Transport Delay

• Variable Transport Delay
1-11
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Options to control the linearizations of these blocks include adjusting any 
optional linearization parameters in the Block Parameters window (such as the 
order of the Padé approximation in the Transport Delay block) or choosing not 
to use the preprogrammed linearization. For example, do not select the Treat 
as gain when linearizing option in the Saturation block.

Note  The preprogrammed, analytic block linearizations are only used in 
block-by-block analytic linearization. When using numerical-perturbation 
linearization, these blocks will be numerically perturbed along with the rest of 
the system.

Block Perturbation
When a preprogrammed block linearization cannot be used, Simulink Control 
Design will compute the block linearization by numerically perturbing the 
states and inputs of the block about the operating point of the block. As opposed 
to the numerical-perturbation linearization method, this perturbation is local 
and its propagation through the rest of the model is restricted.

The block perturbation algorithm involves introducing a small perturbation to 
the nonlinear block and measuring the response to this perturbation. Both the 
perturbation and the response are used to create the matrices in the linear 
state-space model of this block. Changing the size of the perturbations will 
change the resulting linearized model.

As described in “Linearization of Nonlinear Models” on page 2-5, a nonlinear 
Simulink block can be written as a state-space system:

In these equations, x(t) represents the states of the block, u(t) represents the 
inputs of the block, and y(t) represents the outputs of the block.

A linearized model of this system is valid in a small region around the 
operating point t=t0, x(t0)=x0, u(t0)=u0, and y(t0)=g(x0,u0,t0)=y0. Subtracting the 
operating point values from the states, inputs, and outputs defines a set of 
variables centered about the operating point:

x· t( ) f x t( ) u t( ) t, ,( )
y t( ) g x t( ) u t( ) t, ,( )

=
=

2



Block-by-Block Analytic Linearization
The linearized model can be written in terms of these new variables and is 
usually valid when these variables are small, i.e. when the departure from the 
operating point is small:

The state-space matrices A, B, C, and D of this linearized model represent the 
Jacobians of the block, as defined in “Linearization of Nonlinear Models” on 
page 2-5. To compute the matrices, the states and inputs are perturbed, one at 
a time, and the response of the system to this perturbation is measured by 
computing  and δy. The perturbation and response are then used to compute 
the matrices in the following way

where

• xp,i is the state vector whose ith component is perturbed from the operating 
point value.

• xo is the state vector at the operating point.

• up,i is the input vector whose ith component is perturbed from the operating 
point value.

• uo is the input vector at the operating point.

•  is the value of  at xp,i, uo.

•  is the value of  at up,i, xo.

•  is the value of  at the operating point.

x t( )δ x t( ) xo
u t( )δ

–
u t( ) uo

y t( )δ
–

y t( ) yo–

=
=
=

x· t( )δ A x t( )δ B u t( )δ
y t( )δ

+
C x t( )δ D u t( )δ+

=
=

δx·

A i
x x

x x
B i

x x

u u

C i
y

x o

p i o

u o

p i o

x

p i p i(:, ) , (:, )

(:, )

, ,

, ,
=

−

−
=

−

−

= pp i p i
y

x x
D i

y y

u u

o

p i o

u o

p i o

, ,

, ,
, (:, )

−

−
=

−

−

x· xp i,
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x·
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•  is the value of  at xp,i, uo.

•  is the value of  at up,i, xo.

• yo is the value of y at the operating point.

Linearized models of discrete-time or multi-rate blocks are computed in a 
similar way. See “Linearization of Discrete-Time Models” on page 2-7 and 
“Linearization of Multi-Rate Models” on page 2-8 for the equations of 
linearized discrete-time and multi-rate systems.

Note  A perturbed value is one that has been changed by a very small amount 
from the operating point value. The default difference between the perturbed 
value and the operating point value is  for block-by-block 
analytic linearization, where x is the operating point value.

Changing the size of the perturbations will change the linearization results. 
The default perturbation size is  where x is the operating point 
value of the state or input being perturbed. To change the perturbation size of 
the states in the Magnetic Ball Plant block in the magball model to 

, type

blockname='magball/Magnetic Ball Plant'
set_param(blockname,'StatePerturbationForJacobian','1e-7')

To change the perturbation size of the input of the Magnetic Ball Plant block 
to , where u is the input signal level, follow these steps:

1 Get the block’s port handles

ph=get_param('magball/Magnetic Ball Plant','PortHandles')

2 Get the inport

pin=ph.Inport(1)

3 Set the perturbation level for this inport

set_param(pin,'PerturbationForJacobian','1e-7')

If there is more than one inport, you can choose to assign a different 
perturbation level to each. The following figure shows an S-Function block with 

y xp i,
y

y up i,
y

10 5– 1 x+( )

10 5– 1 x+( )

10 7– 1 x+( )

10 7– 1 u+( )
4



Block-by-Block Analytic Linearization
two input signals, the actual signal and an index variable. Since you probably 
do not want to perturb the index signal, you can assign a perturbation level of 
zero to this inport.

Figure 1-5:  Block Containing Two Inports

��������	�
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���
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Numerical-Perturbation Linearization
An alternative linearization method available for use in Simulink Control 
Design is numerical-perturbation linearization, which computes state-space 
matrices for the linearized model by numerical perturbation of the whole 
system. The method is relatively quick and simple, although as mentioned in 
“Linearization Algorithms” on page 1-9, it does have some disadvantages.

Numerical-perturbation linearization requires that root-level inport and 
outport blocks be present in the model. These blocks define the portion of the 
model that you want to linearize instead of inserting input and output points 
by right-clicking on the signal lines. Any input, output, or open loop points on 
signal lines in the model will be ignored when using numerical-perturbation 
linearization. 

The perturbation is introduced to the system at the root level inport blocks and 
in the states of the system. The response to the perturbation is measured at the 
outport blocks. Suggestions for controlling the results of 
numerical-perturbation linearization to create accurate linearized models are 
given in “Controlling the Results of Numerical-Perturbation Linearization” on 
page 1-19

Invoking Numerical-Perturbation Linearization
Prior to Simulink 3.0, numerical-perturbation linearization was the only 
linearization method available with Simulink. Although block-by-block 
analytic linearization is now the default linearization method, you might 
choose to use numerical-perturbation linearization if your model is very large 
or complicated.

To use numerical-perturbation linearization with the Simulink Control Design 
GUI, select Tools -> Options while in the Linearizations node of the Control 
and Estimation Tools Manager and select Numerical-Perturbation from the 
Linearization Algorithms menu. 

To use numerical-perturbation linearization with the linearize function, set 
the LinearizationAlgorithm option to 'numericalpert' with the linoptions 
function.

linopt=linoptions('LinearizationAlgorithm','numericalpert')

To linearize the model, type
6



Numerical-Perturbation Linearization
sys=linearize('modelname',op,linopt)

where modelname is the name of the model being linearized and op is the 
operating point object for the system.

Perturbation Algorithm
The numerical perturbation algorithm involves introducing a small 
perturbation to the nonlinear model and measuring the response to this 
perturbation. Both the perturbation and the response are used to create the 
matrices in the linear state-space model. Changing the size of the 
perturbations will change the resulting linearized model.

As described in “Linearization of Nonlinear Models” on page 2-5, a nonlinear 
Simulink model can be written as a state-space system:

In these equations, x(t) represents the states of the model, u(t) represents the 
inputs of the model, and y(t) represents the outputs of the model.

A linearized model of this system is valid in a small region around the 
operating point t=t0, x(t0)=x0, u(t0)=u0, and y(t0)=g(x0,u0,t0)=y0. Subtracting the 
operating point values from the states, inputs, and outputs defines a set of 
variables centered about the operating point:

The linearized model can be written in terms of these new variables and is 
usually valid when these variables are small, i.e. when the departure from the 
operating point is small:

The state-space matrices A, B, C, and D of this linearized model represent the 
Jacobians of the system, as defined in “Linearization of Nonlinear Models” on 
page 2-5. To compute the matrices, the states and inputs are perturbed, one at 
a time, and the response of the system to this perturbation is measured by 

x· t( ) f x t( ) u t( ) t, ,( )
y t( ) g x t( ) u t( ) t, ,( )

=
=

x t( )δ x t( ) xo
u t( )δ

–
u t( ) uo

y t( )δ
–

y t( ) yo–

=
=
=

x· t( )δ A x t( )δ B u t( )δ
y t( )δ

+
C x t( )δ D u t( )δ+

=
=
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computing  and δy. The perturbation and response are then used to compute 
the matrices in the following way

where

• xp,i is the state vector whose ith component is perturbed from the operating 
point value.

• xo is the state vector at the operating point.

• up,i is the input vector whose ith component is perturbed from the operating 
point value.

• uo is the input vector at the operating point.

•  is the value of  at xp,i, uo.

•  is the value of  at up,i, xo.

•  is the value of  at the operating point.

•  is the value of  at xp,i, uo.

•  is the value of  at up,i, xo.

• yo is the value of y at the operating point.

Linearized models of discrete-time or multi-rate systems are computed in a 
similar way. See “Linearization of Discrete-Time Models” on page 2-7 and 
“Linearization of Multi-Rate Models” on page 2-8 for the equations of 
linearized discrete-time and multi-rate systems.
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Numerical-Perturbation Linearization
Note  A perturbed value is one that has been changed by a very small amount 
from the operating point value. The default difference between the perturbed 
value and the operating point value is  for 
numerical-perturbation linearization. 

Controlling the Results of Numerical-Perturbation 
Linearization
Several factors influence the creation of accurate linearized models. Chapter 2, 
“What Is Linearization?” discusses some of these factors, such as careful 
selection of operating points. Factors that are particular to 
numerical-perturbation linearization are presented here, with suggestions for 
controlling them.

Setting the Perturbation Level
In numerical-perturbation linearization, there are three options for setting the 
perturbation levels of states and inport blocks:

1 You can accept the default perturbation levels. The default perturbation 
levels for the states are , where x is a vector of the operating 
point values for the states in the model. Similarly, default perturbation 
levels for the inport blocks are , where u is a vector of the 
operating point values for the inputs in the model.

2 You can edit the linearization property NumericalPertRel using the 
linoptions function. The value of this property adjusts the perturbations in 
the following way

- The perturbation of the states is 
.

- The perturbation of the inputs is 
.

3 You can provide vectors of perturbation levels for the states and inport 
blocks. These values override the values computed using the 
NumericalPertRel value. Specify the perturbation levels by editing the 
linearization properties NumericalXPert and NumericalUPert using the 

10 5– 10 8– x+

10 5– 10 8– x+

10 5– 10 8– u+

NumericalPertRel+1e 3– NumericalPertRel x××

NumericalPertRel+1e 3– NumericalPertRel u××
1-19
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linoptions function. The properties NumericalXPert and NumericalUPert 
are vectors of absolute perturbation levels.

Handling Special Blocks
Certain blocks, especially those containing discontinuities such as Saturation 
or Transport Delay, may not linearize well using numerical-perturbation. 
Although these blocks often have preprogrammed linearizations that are used 
with block-by-block analytic linearization instead of numerically perturbing 
them, they are not used in numerical-perturbation linearization. An 
alternative solution is to replace these blocks with an appropriate block before 
linearizing your model. For example, you might choose to replace a Saturation 
block with a Gain block.

Handling Feedback Loops
“Understanding Open Loop Analysis” on page 2-11 discusses the effect of 
feedback loops on the results of a linearization. With block-by-block analytic 
linearization, you can perform open loop analysis without removing feedback 
loops. When using numerical-perturbation linearization, the only way to 
remove the effect of feedback loops is to manually remove them from the model 
and manually force the operating point to remain the same as the original 
model.
0
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